论文标题
从干预措施中发现的因果关系
Federated Causal Discovery From Interventions
论文作者
论文摘要
因果发现通过恢复变量之间的基本因果机制在减轻模型不确定性中起关键作用。在许多实际领域(例如医疗保健)中,对个人实体收集的数据的访问主要是有限的,主要是为了隐私和监管限制。但是,大多数现有的因果发现方法都要求数据在集中位置可用。作为回应,研究人员引入了联邦因果关系。虽然以前的联合方法考虑了分布式的观察数据,但介入数据的集成仍然在很大程度上没有探索。我们提出了FedCDI,这是一个联合框架,用于从包含介入样品的分布数据中推断因果结构。根据联合学习框架,FedCDI通过交换信念更新而不是原始样本来改善隐私。此外,它引入了一种新颖的干预方法,用于汇总单个更新。我们分析了共享或不相交的介入协变量的方案,并减轻介入数据异质性的不利影响。 FedCDI的性能和可伸缩性在各种合成和现实世界图中进行了严格测试。
Causal discovery serves a pivotal role in mitigating model uncertainty through recovering the underlying causal mechanisms among variables. In many practical domains, such as healthcare, access to the data gathered by individual entities is limited, primarily for privacy and regulatory constraints. However, the majority of existing causal discovery methods require the data to be available in a centralized location. In response, researchers have introduced federated causal discovery. While previous federated methods consider distributed observational data, the integration of interventional data remains largely unexplored. We propose FedCDI, a federated framework for inferring causal structures from distributed data containing interventional samples. In line with the federated learning framework, FedCDI improves privacy by exchanging belief updates rather than raw samples. Additionally, it introduces a novel intervention-aware method for aggregating individual updates. We analyze scenarios with shared or disjoint intervened covariates, and mitigate the adverse effects of interventional data heterogeneity. The performance and scalability of FedCDI is rigorously tested across a variety of synthetic and real-world graphs.