论文标题

准线性椭圆形诺伊曼问题的梯度估计值无限的一阶术语

Gradient estimates for quasilinear elliptic Neumann problems with unbounded first-order terms

论文作者

Cirant, Marco, Goffi, Alessandro, Leonori, Tommaso

论文摘要

本文研究了针对$ p $ laplacian构图的差异型方程的全球先验梯度估计,其一阶术语在梯度的一阶术语中具有多项式增长,在方程源项的适当可集成性假设下。该结果适用于Lebesgue空间中无界数据的椭圆问题,并补充了在欧几里得空间凸形域上构成的Neumann边界条件。

This paper studies global a priori gradient estimates for divergence-type equations patterned over the $p$-Laplacian with first-order terms having polynomial growth with respect to the gradient, under suitable integrability assumptions on the source term of the equation. The results apply to elliptic problems with unbounded data in Lebesgue spaces complemented with Neumann boundary conditions posed on convex domains of the Euclidean space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源