论文标题

降低有效启用数据的预测控制的尺寸

Dimension Reduction for Efficient Data-Enabled Predictive Control

论文作者

Zhang, Kaixiang, Zheng, Yang, Shang, Chao, Li, Zhaojian

论文摘要

在这封信中,我们提出了一种简单而有效的奇异价值分解(SVD)策略,以减少支持数据支持的预测性控制(DEEPC)中的优化问题维度。具体而言,在线性时间流体系统的情况下,可以将过多的输入/输出测量值重新排列到较小的数据库中,以进行系统行为的非参数表示。基于此观察结果,我们制定了一种基于SVD的策略,以预先处理降低DIEPC的离线数据。数值实验证实,所提出的方法显着提高了计算效率,而无需牺牲控制性能。

In this letter, we propose a simple yet effective singular value decomposition (SVD) based strategy to reduce the optimization problem dimension in data-enabled predictive control (DeePC). Specifically, in the case of linear time-invariant systems, the excessive input/output measurements can be rearranged into a smaller data library for the non-parametric representation of system behavior. Based on this observation, we develop an SVD-based strategy to pre-process the offline data that achieves dimension reduction in DeePC. Numerical experiments confirm that the proposed method significantly enhances the computation efficiency without sacrificing the control performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源