论文标题

具有射频连接的多层旋转神经网络

Multilayer spintronic neural networks with radio-frequency connections

论文作者

Ross, Andrew, Leroux, Nathan, de Riz, Arnaud, Marković, Danijela, Sanz-Hernández, Dédalo, Trastoy, Juan, Bortolotti, Paolo, Querlioz, Damien, Martins, Leandro, Benetti, Luana, Claro, Marcel S., Anacleto, Pedro, Schulman, Alejandro, Taris, Thierry, Begueret, Jean-Baptiste, Saïghi, Sylvain, Jenkins, Alex S., Ferreira, Ricardo, Vincent, Adrien F., Mizrahi, Alice, Grollier, Julie

论文摘要

Spintronic Nano-synapses和纳米神经元的富含,可重现和可控制的磁化动力学,以高精度执行复杂的认知计算。这些动态的纳米版本可以改变人工智能硬件,前提是它们实施了最先进的深神经网络。但是,今天没有可扩展的方法可以在多层中连接它们。在这里,我们表明,可以将Spintronics的旗舰纳米组件(磁性隧道连接)连接到多层神经网络中,由于其磁化动态,它们可以实现突触和神经元,并通过处理,传输和接收射频(RF)信号进行通信。我们构建了一个硬件自旋神经网络,该神经网络由两层连接的九个磁性隧道连接组成,并表明它本质上对非线性分离的RF输入进行了分类,精度为97.7%。使用物理模拟,我们证明了大型纳米级连接网络可以从其RF传输中实现对无人机的最新识别,而无需数字化,并且仅消耗了几毫米,这是与当前使用的技术相比,在功耗中获得了超过四个巨大的范围。这项研究奠定了深层,动力学的自旋神经网络的基础。

Spintronic nano-synapses and nano-neurons perform complex cognitive computations with high accuracy thanks to their rich, reproducible and controllable magnetization dynamics. These dynamical nanodevices could transform artificial intelligence hardware, provided that they implement state-of-the art deep neural networks. However, there is today no scalable way to connect them in multilayers. Here we show that the flagship nano-components of spintronics, magnetic tunnel junctions, can be connected into multilayer neural networks where they implement both synapses and neurons thanks to their magnetization dynamics, and communicate by processing, transmitting and receiving radio frequency (RF) signals. We build a hardware spintronic neural network composed of nine magnetic tunnel junctions connected in two layers, and show that it natively classifies nonlinearly-separable RF inputs with an accuracy of 97.7%. Using physical simulations, we demonstrate that a large network of nanoscale junctions can achieve state-of the-art identification of drones from their RF transmissions, without digitization, and consuming only a few milliwatts, which is a gain of more than four orders of magnitude in power consumption compared to currently used techniques. This study lays the foundation for deep, dynamical, spintronic neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源