论文标题
Virasoro代数的子代数的纠缠和几何形状
Entanglement and geometry from subalgebras of the Virasoro algebra
论文作者
论文摘要
在这项工作中,我们研究了二维形式的保形场理论中Virasoro代数的SL(2,R)亚代数构建的广义相干状态的家族。我们得出了能量密度和纠缠熵,并与在本地激发态中计算的类似数量讨论它们的等效性。此外,我们分析了它们的双重全息几何形状,并从ryu-takayanagi处方中繁殖纠缠熵。最后,我们概述了这种普遍类别的国家在运营商生长和不均匀淬火中的可能应用。
In this work we study families of generalised coherent states constructed from SL(2,R) subalgebras of the Virasoro algebra in two-dimensional conformal field theories. We derive the energy density and entanglement entropy and discuss their equivalence with analogous quantities computed in locally excited states. Moreover, we analyze their dual, holographic geometries and reproduce entanglement entropies from the Ryu-Takayanagi prescription. Finally, we outline possible applications of this universal class of states to operator growth and inhomogeneous quenches.