论文标题

迈向最佳竞争解决方案

Towards an Optimal Contention Resolution Scheme for Matchings

论文作者

Nuti, Pranav, Vondrák, Jan

论文摘要

在本文中,我们研究了匹配的争论解决方案。给定一个匹配的$ x $和一个随机套件$ r(x)$,其中每个边缘$ e $以概率$ x_e $独立出现,我们希望选择一个匹配的$ m \ subseteq r(x)$,使得$ \ pr [e \ in m mid e \ in mid e \ in R(x)\ geq c $ in r(x)] \ geq c $,对于$ c $ for $ c $,可能是$ c $。我们将这种选择方法称为$ C $平衡的争论解决方案。 我们的主要结果是(i)一个渐近(在$ \ | x \ | _ \ infty $中,为0)最佳$ \ simeq 0.544 $ - 平衡的争夺解决方案,以及(ii)$ 0.509 $ - 平衡的争议解决方案,用于双击匹配的竞争分辨率。据我们所知,这个结果首次建立了组合优化问题的任何自然放松,(i)离线和随机秩序在线争夺解决方案之间的分离,以及(ii)单调和非单调争议解决方案。我们还向组合分配问题提出了计划的应用,并讨论了与范德沃登(Van der Waerden)对偶然随机矩阵永久的猜想有关的一些开放问题。

In this paper, we study contention resolution schemes for matchings. Given a fractional matching $x$ and a random set $R(x)$ where each edge $e$ appears independently with probability $x_e$, we want to select a matching $M \subseteq R(x)$ such that $\Pr[e \in M \mid e \in R(x)] \geq c$, for $c$ as large as possible. We call such a selection method a $c$-balanced contention resolution scheme. Our main results are (i) an asymptotically (in the limit as $\|x\|_\infty$ goes to 0) optimal $\simeq 0.544$-balanced contention resolution scheme for general matchings, and (ii) a $0.509$-balanced contention resolution scheme for bipartite matchings. To the best of our knowledge, this result establishes for the first time, in any natural relaxation of a combinatorial optimization problem, a separation between (i) offline and random order online contention resolution schemes, and (ii) monotone and non-monotone contention resolution schemes. We also present an application of our scheme to a combinatorial allocation problem, and discuss some open questions related to van der Waerden's conjecture for the permanent of doubly stochastic matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源