论文标题

带有NEF切线束的歧管的规范扩展

Canonical extensions of manifolds with nef tangent bundle

论文作者

Müller, Niklas

论文摘要

对于任何紧凑的Kähler歧管$(x,ω)$,一个人可能会关联一束仿射空间$ z_x \ rightarrow x $称为$ \ textIt {canonoral扩展} $ $ x $。在本文中,我们证明(假设Campana-Peternell的众所周知的猜想可以保持真实),如果$ x $的切线束为nef,那么总空间$ z_x $是Stein歧管。这部分回答了格雷布·瓦(Greb-wong)提出的问题,即这两个属性是否实际上是同等的。我们还补充了在匡威方向上表面的一些已知结果。

To any compact Kähler manifold $(X, ω)$ one may associate a bundle of affine spaces $Z_X\rightarrow X$ called a $\textit{canonical extension}$ of $X$. In this paper we prove that (assuming a well-known conjecture of Campana-Peternell to hold true) if the tangent bundle of $X$ is nef, then the total space $Z_X$ is a Stein manifold. This partially answers a question raised by Greb-Wong of whether these two properties are actually equivalent. We also complement some known results for surfaces in the converse direction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源