论文标题
带有NEF切线束的歧管的规范扩展
Canonical extensions of manifolds with nef tangent bundle
论文作者
论文摘要
对于任何紧凑的Kähler歧管$(x,ω)$,一个人可能会关联一束仿射空间$ z_x \ rightarrow x $称为$ \ textIt {canonoral扩展} $ $ x $。在本文中,我们证明(假设Campana-Peternell的众所周知的猜想可以保持真实),如果$ x $的切线束为nef,那么总空间$ z_x $是Stein歧管。这部分回答了格雷布·瓦(Greb-wong)提出的问题,即这两个属性是否实际上是同等的。我们还补充了在匡威方向上表面的一些已知结果。
To any compact Kähler manifold $(X, ω)$ one may associate a bundle of affine spaces $Z_X\rightarrow X$ called a $\textit{canonical extension}$ of $X$. In this paper we prove that (assuming a well-known conjecture of Campana-Peternell to hold true) if the tangent bundle of $X$ is nef, then the total space $Z_X$ is a Stein manifold. This partially answers a question raised by Greb-Wong of whether these two properties are actually equivalent. We also complement some known results for surfaces in the converse direction.