论文标题

推荐系统的理由结果:基于服务的方法

Justification of Recommender Systems Results: A Service-based Approach

论文作者

Mauro, Noemi, Hu, Zhongli Filippo, Ardissono, Liliana

论文摘要

随着对可预测和负责人的人工智能的需求不断增长,通过指定建议项目的建议或为什么相关的原因来解释或证明推荐系统结果的能力已成为主要目标。但是,当前模型并未明确表示用户在与项目的整体交互过程中可能遇到的服务和参与者,从其选择到其使用情况。因此,他们无法评估他们对用户体验的影响。为了解决这个问题,我们提出了一种新颖的理由方法,该方法使用服务模型来(i)从有关与项目相互作用的所有阶段,不同粒度水平的互动阶段中提取经验数据,以及(ii)在这些阶段围绕这些阶段的建议理由。在一项用户研究中,我们将我们的方法与反映推荐系统结果正当理由的基准进行了比较。参与者评估了我们基于服务的辩护模型提供的用户意识支持,高于基线提供的模型。此外,我们的模型通过具有不同水平的好奇心或认知需求(NFC)的用户获得了更高的接口充足性和满意度评估。不同的是,高NFC参与者更喜欢直接检查项目评论。这些发现鼓励采用服务模型来证明推荐系统的结果合理,但建议调查个性化策略,以适应各种交互需求。

With the increasing demand for predictable and accountable Artificial Intelligence, the ability to explain or justify recommender systems results by specifying how items are suggested, or why they are relevant, has become a primary goal. However, current models do not explicitly represent the services and actors that the user might encounter during the overall interaction with an item, from its selection to its usage. Thus, they cannot assess their impact on the user's experience. To address this issue, we propose a novel justification approach that uses service models to (i) extract experience data from reviews concerning all the stages of interaction with items, at different granularity levels, and (ii) organize the justification of recommendations around those stages. In a user study, we compared our approach with baselines reflecting the state of the art in the justification of recommender systems results. The participants evaluated the Perceived User Awareness Support provided by our service-based justification models higher than the one offered by the baselines. Moreover, our models received higher Interface Adequacy and Satisfaction evaluations by users having different levels of Curiosity or low Need for Cognition (NfC). Differently, high NfC participants preferred a direct inspection of item reviews. These findings encourage the adoption of service models to justify recommender systems results but suggest the investigation of personalization strategies to suit diverse interaction needs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源