论文标题

$ \ mathbb {r}^{4} $的两组分椭圆系统的站立波

Standing waves for two-component elliptic system with critical growth in $\mathbb{R}^{4}$: the attractive case

论文作者

Guo, Lun, Li, Qi, Luo, Xiao, Molle, Riccardo

论文摘要

在本文中,我们考虑了以下具有关键增长\ BEGIN {等式*}的两个两个组件椭圆系统 \ begin {case} -ΔU+(v_1(x)+λ) -ΔV+(v_2(x)+λ)v =μ_2v^{3}+βvu^{2},\ \ x \ in \ athbb {r}^4, %u \ geq 0,\ \ v \ geq 0 \ \ text {in} \ \ r^4。 \ end {cases} \ end {equation*}其中$ v_j(x)\ in l^{2}(\ mathbb {r}^4)$是非负势,而非线性系数$β,μ_j$,$ j $,$ j = 1,2 $,为正。在这里,我们还假设$λ> 0 $。通过变异方法与度理论相结合,我们证明了关于假设$β> \ max \ {μ_1,μ_2\} $的阳性解决方案的存在和多样性的结果。这些结果将半线性schrödinger方程的结果推广到Cerami和Passaseo(Siam J.Math。Anal。,28,867-885,(1997))到上述椭圆系统,同时扩展了存在的存在,同时扩展了Liu和liu的存在(Colc。var。var。partialiare diention方程,59:59:145:145:145:145,(20202020202020))。

In this paper, we consider the following two-component elliptic system with critical growth \begin{equation*} \begin{cases} -Δu+(V_1(x)+λ)u=μ_1u^{3}+βuv^{2}, \ \ x\in \mathbb{R}^4, -Δv+(V_2(x)+λ)v=μ_2v^{3}+βvu^{2}, \ \ x\in \mathbb{R}^4 , % u\geq 0, \ \ v\geq 0 \ \text{in} \ \R^4. \end{cases} \end{equation*} where $V_j(x) \in L^{2}(\mathbb{R}^4)$ are nonnegative potentials and the nonlinear coefficients $β,μ_j$, $j=1,2$, are positive. Here we also assume $λ>0$. By variational methods combined with degree theory, we prove some results about the existence and multiplicity of positive solutions under the hypothesis $β>\max\{μ_1,μ_2\}$. These results generalize the results for semilinear Schrödinger equation on half space by Cerami and Passaseo (SIAM J. Math. Anal., 28, 867-885, (1997)) to the above elliptic system, while extending the existence result from Liu and Liu (Calc. Var. Partial Differential Equations, 59:145, (2020)).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源