论文标题

3D谐波损失:朝任务一致且友好的3D对象检测V2X编排的边缘检测

3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object Detection on Edge for V2X Orchestration

论文作者

Zhang, Haolin, Mekala, M S, Nain, Zulkar, Yang, Dongfang, Park, Ju H., Jung, Ho-Youl

论文摘要

基于边缘计算的3D感知引起了智能运输系统(ITS)的关注,因为对交通候选者的实时监控可能会加强车辆到所有的(V2X)编排。由于能够精确衡量LiDAR周围环境的深度信息的能力,因此越来越多的研究集中于基于激光雷达的3D检测,这显着促进了3D感知的发展。由于高计算密集型操作,很少有方法满足边缘部署的实时需求。此外,由于稀疏性很大,对象检测的不一致问题仍在点云域中发现。本文彻底分析了这个问题,并全面唤起了确定图像专业化中不一致问题的最新著作。因此,我们提出了一个3D谐波损耗函数,以减轻基于点的不一致的预测。此外,从数学优化的角度证明了3D谐波损失的可行性。 KITTI数据集和DAIR-V2X-I数据集用于仿真,我们提出的方法比基准模型大大提高了性能。此外,边缘设备上的模拟部署(Jetson Xavier TX)验证了我们提出的模型的效率。

Edge computing-based 3D perception has received attention in intelligent transportation systems (ITS) because real-time monitoring of traffic candidates potentially strengthens Vehicle-to-Everything (V2X) orchestration. Thanks to the capability of precisely measuring the depth information on surroundings from LiDAR, the increasing studies focus on lidar-based 3D detection, which significantly promotes the development of 3D perception. Few methods met the real-time requirement of edge deployment because of high computation-intensive operations. Moreover, an inconsistency problem of object detection remains uncovered in the pointcloud domain due to large sparsity. This paper thoroughly analyses this problem, comprehensively roused by recent works on determining inconsistency problems in the image specialisation. Therefore, we proposed a 3D harmonic loss function to relieve the pointcloud based inconsistent predictions. Moreover, the feasibility of 3D harmonic loss is demonstrated from a mathematical optimization perspective. The KITTI dataset and DAIR-V2X-I dataset are used for simulations, and our proposed method considerably improves the performance than benchmark models. Further, the simulative deployment on an edge device (Jetson Xavier TX) validates our proposed model's efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源