论文标题

非交通性伊瓦川理论的主要猜想

A Main Conjecture in non-commutative Iwasawa theory

论文作者

Gil, Antonio Mejías

论文摘要

我们在硫泽族的数字领域理论中制定了一个新的均值主要猜想,并研究其特性。这是针对任意的一维$ p $ -adic lie扩展的$ l_ \ infty/k $,其中包含Cyclotomic $ \ mathbb {z} _p $ - extension $ k_ \ infty $ k_ \ infty $。与该地区现有的猜想相反,不需要$ l_ \ infty/k $是阿贝里安(Abelian),否则$ l_ \ infty $是完全真实的。我们证明了基本上所有参数的主要猜想的独立性,并探索了其功能行为。此外,在很大程度上,这种新的猜想在很大程度上概括了现有的烧伤,库里亚拉(Kurihara),萨诺(Kurihara)和萨诺(Sano)以及里特(Ritter)和魏斯(Ritter and Weiss),这使我们能够在几种情况下推断出其有效性。

We formulate a new equivariant Main Conjecture in Iwasawa theory of number fields and study its properties. This is done for arbitrary one-dimensional $p$-adic Lie extensions $L_\infty/K$ containing the cyclotomic $\mathbb{Z}_p$-extension $K_\infty$ of the base field. As opposed to existing conjectures in the area, no requirement that $L_\infty/K$ be abelian or that $L_\infty$ be totally real is imposed. We prove the independence of the Main Conjecture of essentially all of its parameters and explore its functorial behaviour. It is furthermore shown that, to a large extent, this new conjecture generalises existing ones of Burns, Kurihara and Sano and Ritter and Weiss, which enables us to deduce its validity in several cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源