论文标题
比索夫:在长尾流量方案中,具有挑战性的视觉数据集SOTIF问题
PeSOTIF: a Challenging Visual Dataset for Perception SOTIF Problems in Long-tail Traffic Scenarios
论文作者
论文摘要
自主驾驶系统中的感知算法在长尾交通情况下面临巨大挑战,在这种情况下,算法性能不足和动态操作环境可以触发预期功能的安全性(SOTIF)的问题。但是,此类场景并未系统地包括在当前的开源数据集中,本文相应地填补了空白。根据触发条件的分析和枚举,发布了高质量的不同数据集,包括从多个资源收集的各种长尾流量方案。考虑到概率对象检测(POD)的开发,该数据集标记触发资源,这些源可能会在方案中作为关键对象引起感知的SOTIF问题。此外,建议使用评估协议来验证POD算法通过不确定性识别关键对象的有效性。该数据集永不停止扩展,第一批开源数据包括1126帧,每个帧中平均为2.27个关键对象和2.47个普通对象。为了演示如何使用此数据集进行SOTIF研究,本文进一步量化了感知SOTIF熵,以确认场景是否未知且对感知系统不安全。实验结果表明,量化的熵可以有效,有效地反映感知算法的失败。
Perception algorithms in autonomous driving systems confront great challenges in long-tail traffic scenarios, where the problems of Safety of the Intended Functionality (SOTIF) could be triggered by the algorithm performance insufficiencies and dynamic operational environment. However, such scenarios are not systematically included in current open-source datasets, and this paper fills the gap accordingly. Based on the analysis and enumeration of trigger conditions, a high-quality diverse dataset is released, including various long-tail traffic scenarios collected from multiple resources. Considering the development of probabilistic object detection (POD), this dataset marks trigger sources that may cause perception SOTIF problems in the scenarios as key objects. In addition, an evaluation protocol is suggested to verify the effectiveness of POD algorithms in identifying the key objects via uncertainty. The dataset never stops expanding, and the first batch of open-source data includes 1126 frames with an average of 2.27 key objects and 2.47 normal objects in each frame. To demonstrate how to use this dataset for SOTIF research, this paper further quantifies the perception SOTIF entropy to confirm whether a scenario is unknown and unsafe for a perception system. The experimental results show that the quantified entropy can effectively and efficiently reflect the failure of the perception algorithm.