论文标题
高保真范德华的高度匹配的半导体纳米线的蒸气 - 液体固定层的生长
Vapor-liquid-solid growth of highly-mismatched semiconductor nanowires with high-fidelity van der Waals layer stacking
论文作者
论文摘要
由分层的,所谓的范德华半导体形成的纳米生物,纳米纤维和其他准二维纳米结构,由于其高性能,可调的光电特性,引起了很多关注。对于由单藻元化的气体,GASE和栅极制成的分层合金,在GASE1-XSX和GASE1-XTEX合金中实现了能量带隙的几乎连续调整。这些合金的金催化蒸气液(VLS)生长产生的主要是纳米质,纳米骨和其他纳米结构,其快速晶体生长界由与催化剂接触的层边缘组成。我们证明,在富含S-XTEX的S-XSX和Gase1-Xtex不同,Au催化的VLS工艺会产生范德华纳米线,其快速生长方向与层正常。 S和TE之间的高不匹配导致Gas1-Xtex合金的能量带隙极大地弯曲,X的X降低至少0.6 eV,至0.03。使用密度函数理论的计算证实了富含S-Xtex的带隙显着降低。纳米线的长度可能超过五十微米,由数万范德华键入沿纳米线的长度的三角形或六边形横截面组成。我们建议,TE在气体中的溶解度较低会导致Au Catalyst-Nanowire界面周围的TE覆盖范围增强,将催化剂限制在chalcogen终止的基底平面(而不是边缘),从而启用了层次的By层C轴,C轴C轴的生长。
Nanobelts, nanoribbons and other quasi-one-dimensional nanostructures formed from layered, so-called, van der Waals semiconductors have garnered much attention due to their high-performance, tunable optoelectronic properties. For layered alloys made from the gallium monochalcogenides GaS, GaSe, and GaTe, near-continuous tuning of the energy bandgap across the full composition range has been achieved in GaSe1-xSx and GaSe1-xTex alloys. Gold-catalyzed vapor-liquid-solid (VLS) growth of these alloys yields predominantly nanobelts, nanoribbons and other nanostructures for which the fast crystal growth front consists of layer edges in contact with the catalyst. We demonstrate that in the S-rich, GaS1-xTex system, unlike GaSe1-xSx and GaSe1-xTex, the Au-catalyzed VLS process yields van der Waals nanowires for which the fast growth direction is normal to the layers. The high mismatch between S and Te leads to extraordinary bowing of the GaS1-xTex alloy's energy bandgap, decreasing by at least 0.6 eV for x as small as 0.03. Calculations using density functional theory confirm the significant decrease in bandgap in S-rich GaS1-xTex. The nanowires can exceed fifty micrometers in length, consisting of tens of thousands of van der Waals-bonded layers with triangular or hexagonal cross-sections of uniform dimensions along the length of the nanowire. We propose that the low solubility of Te in GaS results in an enhancement in Te coverage around the Au catalyst-nanowire interface, confining the catalyst to the chalcogen-terminated basal plane (rather than the edges) and thereby enabling layer-by-layer, c-axis growth.