论文标题

平面图上的分离路径问题的参数化算法:$ k^2 $的指数和$ n $线性的线性

Parameterized Algorithm for the Disjoint Path Problem on Planar Graphs: Exponential in $k^2$ and Linear in $n$

论文作者

Cho, Kyungjin, Oh, Eunjin, Oh, Seunghyeok

论文摘要

在本文中,我们研究\ textsf {平面脱节路径}问题:给定一个无方向的平面图$ g $,带有$ n $顶点和一套$ t $ t $ of $ k $ pairs $(s_i,t_i,t_i)_ {i = 1}^k $ a $ s_i $和$ t_i $的所有索引$ i \ in \ {1,\ ldots,k \} $。我们提出了$ 2^{o(k^2)} n $ - time算法的\ textsf {planar discart discoint paths}问题。这改善了两种先前最著名的算法:$ 2^{2^{o(k)}} n $ - 时间算法[离散应用数学1995]和$ 2^{o(k^2)} n^6 $ - time time Algorithm [Stoc 2020]。

In this paper, we study the \textsf{Planar Disjoint Paths} problem: Given an undirected planar graph $G$ with $n$ vertices and a set $T$ of $k$ pairs $(s_i,t_i)_{i=1}^k$ of vertices, the goal is to find a set $\mathcal P$ of $k$ pairwise vertex-disjoint paths connecting $s_i$ and $t_i$ for all indices $i\in\{1,\ldots,k\}$. We present a $2^{O(k^2)}n$-time algorithm for the \textsf{Planar Disjoint Paths} problem. This improves the two previously best-known algorithms: $2^{2^{O(k)}}n$-time algorithm [Discrete Applied Mathematics 1995] and $2^{O(k^2)}n^6$-time algorithm [STOC 2020].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源