论文标题
学习任务要求和代理功能多代理任务分配
Learning Task Requirements and Agent Capabilities for Multi-agent Task Allocation
论文作者
论文摘要
本文提出了一个学习框架,以估算代理能力和任务要求模型,以进行多代理任务分配。通过一组团队配置和相应的任务性能作为培训数据,可以学会将线性任务约束嵌入到许多基于优化的任务分配框架中。进行了全面的计算评估,以通过有限数量的团队配置和性能对来测试学习框架的可扩展性和预测准确性。开发了基于ROS和凉亭的仿真环境,以验证实际的多代理探索和操纵任务中所提出的需求学习和任务分配框架。结果表明,具有40个任务和6种代理类型的方案的学习过程大约使用12秒,最终以0.5-2%的预测错误。
This paper presents a learning framework to estimate an agent capability and task requirement model for multi-agent task allocation. With a set of team configurations and the corresponding task performances as the training data, linear task constraints can be learned to be embedded in many existing optimization-based task allocation frameworks. Comprehensive computational evaluations are conducted to test the scalability and prediction accuracy of the learning framework with a limited number of team configurations and performance pairs. A ROS and Gazebo-based simulation environment is developed to validate the proposed requirements learning and task allocation framework in practical multi-agent exploration and manipulation tasks. Results show that the learning process for scenarios with 40 tasks and 6 types of agents uses around 12 seconds, ending up with prediction errors in the range of 0.5-2%.