论文标题
出生的攻击孤子和Björling问题解决方案的存在和非唯一性
Born-Infeld Solitons and Existence & Non-uniqueness of Solutions to the Björling Problem
论文作者
论文摘要
在这本半期的文章中,我们将出生的孔表面研究为零平均曲率表面,并为它们得出共形参数。然后,我们提出了两种解决Björling问题的方法,其中一种将它们视为时型最小表面,另一种将其视为Barbashov-Chernikov代表。最后,我们表明,对Björling问题的解决方案可能不是唯一的,与最小和最大表面不同。
In this semi-expository article, we study Born-Infeld soliton surfaces as zero mean curvature surfaces and derive conformal parameters for them. Then we present two approaches to solve the Björling problem for such surfaces, one of them treating them as time-like minimal surfaces and the other one using the Barbashov-Chernikov representation. Finally, we show that the solution to the Björling problem may not be unique unlike minimal and maximal surfaces.