论文标题
牛顿喜欢迭代方法,无衍生物用于求解基于动态系统的非线性方程
Newton Like Iterative Method without Derivative for Solving Nonlinear Equations Based on Dynamical Systems
论文作者
论文摘要
研究了求解非线性方程的迭代问题。基于动态系统理论设计了一种具有可调参数的牛顿的新牛顿迭代方法。为了避免迭代方案中的衍生功能,使用差异商代替衍生物。与现有方法不同,本文中的差异商方案具有更高的准确性。因此,新的迭代方法适用于更广泛的初始值范围。最后,给出了几个数值示例,以验证该方法的实用性和优越性。
The iterative problem of solving nonlinear equations is studied. A new Newton like iterative method with adjustable parameters is designed based on the dynamic system theory. In order to avoid the derivative function in the iterative scheme, the difference quotient is used instead of the derivative. Different from the existing methods, the difference quotient scheme in this paper has higher accuracy. Thus, the new iterative method is suitable for a wider range of initial values. Finally, several numerical examples are given to verify the practicability and superiority of the method.