论文标题

使用多层模型破坏波场统计

Breaking wave field statistics with a multilayer model

论文作者

Wu, Jiarong, Popinet, Stéphane, Deike, Luc

论文摘要

在新型的多层框架中表征了断裂波场的统计数据,该框架将单层圣式系统概括为Navier-Stokes方程的多层和非静态公式。我们模拟了物理空间中相位分辨的表面波场的合奏,在该空间中,在其中建模了强大的非线性,包括波浪破裂,而没有表面倾覆。我们通过识别破坏前线及其速度来提取波浪破裂的运动学,以便于用典型的风波光谱初始化的自由发展的波场。 $λ(c)$分布定义为在菲利普斯(Phillips)1985年以速度$ c $至$ c $至$ c $ to $ c $移动的破裂前线(每单位区域)的长度,据报道在广泛的条件下。我们恢复了$λ(c)\ propto c^{ - 6} $缩放,而没有任何明显的风力强迫陡峭的波浪场。仅基于均方根斜率和峰值波相速度的$λ(c)$的缩放显示,以很好地描述了建模的断裂分布。发现建模的断裂分布与现场测量非常吻合,并且所提出的缩放与以前的经验公式一致。目前的工作为模拟湍流上海洋的模拟铺平了道路,并与现实的破坏波动力学(包括Langmuir湍流)和其他子尺度尺度过程铺平了道路。

The statistics of breaking wave fields is characterised within a novel multi-layer framework, which generalises the single-layer Saint-Venant system into a multi-layer and non-hydrostatic formulation of the Navier-Stokes equations. We simulate an ensemble of phase-resolved surface wave fields in physical space, where strong non-linearities including wave breaking are modelled, without surface overturning. We extract the kinematics of wave breaking by identifying breaking fronts and their speed, for freely evolving wave fields initialised with typical wind wave spectra. The $Λ(c)$ distribution, defined as the length of breaking fronts (per unit area) moving with speed $c$ to $c+dc$ following Phillips 1985, is reported for a broad range of conditions. We recover the $Λ(c) \propto c^{-6}$ scaling without any explicit wind forcing for steep enough wave fields. A scaling of $Λ(c)$ based solely on the mean square slope and peak wave phase speed is shown to describe the modelled breaking distributions well. The modelled breaking distributions are found to be in good agreement with field measurements and the proposed scaling is consistent with previous empirical formulations. The present work paves the way for simulations of the turbulent upper ocean directly coupled with realistic breaking waves dynamics, including Langmuir turbulence, and other sub-mesoscale processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源