论文标题
低离头量子误差校正代码具有环状拓扑
Low-overhead quantum error correction codes with a cyclic topology
论文作者
论文摘要
量子误差校正是可扩展量子计算的重要成分。稳定器代码是纠正量子错误,方便逻辑操作的最有前途,最直接的方法之一,并通过增加所涉及的量子数来提高性能。在这里,我们提出了一个五量Qubit Perfect代码的资源评估缩放,并增加了重量循环稳定器,可在环形体系结构上进行小距离,这考虑了超导平台的拓扑特征。我们展示了一种方法,可以构建校正代码的量子电路,并与非邻次数据量轴纠缠在一起。此外,我们引入了一种基于神经网络的解码算法,该算法由改进的查找表解码器支持,并提供了对拟议代码的数值模拟,该代码证明了逻辑错误率的指数抑制。
Quantum error correction is an important ingredient for scalable quantum computing. Stabilizer codes are one of the most promising and straightforward ways to correct quantum errors, are convenient for logical operations, and improve performance with increasing the number of qubits involved. Here, we propose a resource-efficient scaling of a five-qubit perfect code with increasing-weight cyclic stabilizers for small distances on the ring architecture, which takes into account the topological features of the superconducting platform. We show an approach to construct the quantum circuit of a correction code with ancillas entangled with non-neighboring data qubits. Furthermore, we introduce a neural network-based decoding algorithm supported by an improved lookup table decoder and provide a numerical simulation of the proposed code, which demonstrates the exponential suppression of the logical error rate.