论文标题
指数领域的独立关系
Independence relations for exponential fields
论文作者
论文摘要
我们在任何指数领域提供了四个不同的独立关系。每个都是在适当的抽象基础类别的指数字段上的规范独立性关系,表明其中两个是NSOP $ _1 $ - 类似于且非简单,第三个是稳定的,第四个是Zilber的Zilber的准指数前几阶,以前已知是稳定的(并且是不可分类的)。我们还根据第三个强大的独立性来表征第四个独立关系。
We give four different independence relations on any exponential field. Each is a canonical independence relation on a suitable Abstract Elementary Class of exponential fields, showing that two of these are NSOP$_1$-like and non-simple, a third is stable, and the fourth is the quasiminimal pregeometry of Zilber's exponential fields, previously known to be stable (and uncountably categorical). We also characterise the fourth independence relation in terms of the third, strong independence.