论文标题
Myops网络:心肌病理学分割,具有多序列CMR图像的灵活组合
MyoPS-Net: Myocardial Pathology Segmentation with Flexible Combination of Multi-Sequence CMR Images
论文作者
论文摘要
心肌病理学细分(Myops)可能是心肌梗死准确诊断和治疗计划的先决条件。但是,实现这种细分是具有挑战性的,这主要是由于图像中的不足和模糊不清的信息。在这项工作中,我们开发了一个端到端的深神经网络(称为Myops-net),以灵活地结合了Myops的五个序列心脏磁共振(CMR)图像。为了提取精确和足够的信息,我们设计了一种有效但灵活的体系结构,以提取和融合跨模式的特征。该体系结构可以解决不同数量的CMR图像和模式的复杂组合,而输出分支针对特定的病理。为了对分割结果施加解剖学知识,我们首先提出一个模块,以使心肌一致性正常并定位病理,然后引入包容性损失以利用心肌疤痕与水肿之间的关系。我们在两个数据集上评估了提议的膜网络,即由50个配对的多序列CMR图像和Miccai2020 Myops Challenge的公共图像组成的私人图像。实验结果表明,在各种情况下,Myops-NET可以实现最新的性能。请注意,在实践诊所中,受试者可能没有完整的序列,例如缺少LGE CMR或映射CMR扫描。因此,我们进行了广泛的实验,以研究所提出的方法在处理不同CMR序列的复杂组合时的性能。结果证明了Myops-NET的优越性和普遍性,更重要的是表明了实际的临床应用。
Myocardial pathology segmentation (MyoPS) can be a prerequisite for the accurate diagnosis and treatment planning of myocardial infarction. However, achieving this segmentation is challenging, mainly due to the inadequate and indistinct information from an image. In this work, we develop an end-to-end deep neural network, referred to as MyoPS-Net, to flexibly combine five-sequence cardiac magnetic resonance (CMR) images for MyoPS. To extract precise and adequate information, we design an effective yet flexible architecture to extract and fuse cross-modal features. This architecture can tackle different numbers of CMR images and complex combinations of modalities, with output branches targeting specific pathologies. To impose anatomical knowledge on the segmentation results, we first propose a module to regularize myocardium consistency and localize the pathologies, and then introduce an inclusiveness loss to utilize relations between myocardial scars and edema. We evaluated the proposed MyoPS-Net on two datasets, i.e., a private one consisting of 50 paired multi-sequence CMR images and a public one from MICCAI2020 MyoPS Challenge. Experimental results showed that MyoPS-Net could achieve state-of-the-art performance in various scenarios. Note that in practical clinics, the subjects may not have full sequences, such as missing LGE CMR or mapping CMR scans. We therefore conducted extensive experiments to investigate the performance of the proposed method in dealing with such complex combinations of different CMR sequences. Results proved the superiority and generalizability of MyoPS-Net, and more importantly, indicated a practical clinical application.