论文标题

通过深入研究对话线程,在社交媒体平台上改善了针对特定目标的立场检测

Improved Target-specific Stance Detection on Social Media Platforms by Delving into Conversation Threads

论文作者

Li, Yupeng, He, Haorui, Wang, Shaonan, Lau, Francis C. M., Song, Yunya

论文摘要

社交媒体上针对特定的立场检测,旨在将文本数据实例(例如帖子或评论)分类为目标问题的立场类别,已成为一种新兴意见挖掘重要性的范式。一个示例应用是要克服疫苗犹豫不决的冠状病毒大流行。但是,现有的立场检测策略仅依赖于个人实例,这些实例不能总是捕捉给定目标的表达立场。作为响应,我们解决了一个称为对话立场检测的新任务,该任务是在给定数据实例及其相应的对话线程时推断给给定目标的立场(例如,Covid-19疫苗接种)。为了解决这项任务,我们首先提出了一个基于姿态注释和基于香港六个主要社交媒体平台的实例中的姿态注释和对话线程结构的基准测试对话立场检测(CSD)数据集。为了从数据实例和对话线程中推断出所需的立场,我们提出了一个称为Branch-Bert的模型,该模型将上下文信息包含在对话线程中。 CSD数据集上的广泛实验表明,我们所提出的模型优于所有不利用上下文信息的基线模型。具体而言,与Semeval-2016 Task 6竞赛中的最先进方法相比,它将F1分数提高了10.3%。这表明了在社交媒体平台上纳入有关检测目标特定立场的丰富上下文信息的潜力,并意味着一种更实用的方法来构建未来的立场检测任务。

Target-specific stance detection on social media, which aims at classifying a textual data instance such as a post or a comment into a stance class of a target issue, has become an emerging opinion mining paradigm of importance. An example application would be to overcome vaccine hesitancy in combating the coronavirus pandemic. However, existing stance detection strategies rely merely on the individual instances which cannot always capture the expressed stance of a given target. In response, we address a new task called conversational stance detection which is to infer the stance towards a given target (e.g., COVID-19 vaccination) when given a data instance and its corresponding conversation thread. To tackle the task, we first propose a benchmarking conversational stance detection (CSD) dataset with annotations of stances and the structures of conversation threads among the instances based on six major social media platforms in Hong Kong. To infer the desired stances from both data instances and conversation threads, we propose a model called Branch-BERT that incorporates contextual information in conversation threads. Extensive experiments on our CSD dataset show that our proposed model outperforms all the baseline models that do not make use of contextual information. Specifically, it improves the F1 score by 10.3% compared with the state-of-the-art method in the SemEval-2016 Task 6 competition. This shows the potential of incorporating rich contextual information on detecting target-specific stances on social media platforms and implies a more practical way to construct future stance detection tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源