论文标题

利用机器学习工具来估计个性化生存曲线的框架

A framework for leveraging machine learning tools to estimate personalized survival curves

论文作者

Wolock, Charles J., Gilbert, Peter B., Simon, Noah, Carone, Marco

论文摘要

审查和截断的情况下,事实结果的条件生存函数是生存分析中估计的常见目标。该参数可能具有科学意义,并且通常在非参数和半参数问题中出现是一种滋扰。除了经典的参数和半参数方法(例如,基于COX比例危害模型)外,还开发了灵活的机器学习方法来估计条件生存函数。但是,其中许多方法是隐式或明确针对风险分层,而不是总体生存功能估计。其他人仅适用于离散时间设置或需要对重量审查权重的逆概率,这可能与结果生存功能本身一样难以估计。在这里,我们采用可观察到的回归模型来对条件生存函数进行分解,其中审查和截断没有作用。这允许应用一系列灵活的回归和分类方法,而不仅仅是明确处理生存数据固有的复杂性的方法。我们概述了基于此分解的估计程序,从经验上评估其性能,并证明了它们在HIV疫苗试验中的数据上的使用。

The conditional survival function of a time-to-event outcome subject to censoring and truncation is a common target of estimation in survival analysis. This parameter may be of scientific interest and also often appears as a nuisance in nonparametric and semiparametric problems. In addition to classical parametric and semiparametric methods (e.g., based on the Cox proportional hazards model), flexible machine learning approaches have been developed to estimate the conditional survival function. However, many of these methods are either implicitly or explicitly targeted toward risk stratification rather than overall survival function estimation. Others apply only to discrete-time settings or require inverse probability of censoring weights, which can be as difficult to estimate as the outcome survival function itself. Here, we employ a decomposition of the conditional survival function in terms of observable regression models in which censoring and truncation play no role. This allows application of an array of flexible regression and classification methods rather than only approaches that explicitly handle the complexities inherent to survival data. We outline estimation procedures based on this decomposition, empirically assess their performance, and demonstrate their use on data from an HIV vaccine trial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源