论文标题

1-D卷积图卷积网络用于分布式能量系统中的故障检测

1-D Convolutional Graph Convolutional Networks for Fault Detection in Distributed Energy Systems

论文作者

Nguyen, Bang L. H., Vu, Tuyen, Nguyen, Thai-Thanh, Panwar, Mayank, Hovsapian, Rob

论文摘要

本文提出了一个1D卷积图神经网络,用于微电网中的故障检测。 1-D卷积神经网络(1D-CNN)和图卷积网络(GCN)的组合有助于从微电网中的电压测量中提取两个时空相关性。故障检测方案包括故障事件检测,故障类型和相分类以及故障位置。有五种神经网络模型培训来处理这些任务。采用转移学习和微调来减少培训工作。将联合复发图卷积神经网络(1D-CGCN)与POTSDAM 13-BUS微电网数据集中的传统ANN结构进行了比较。故障检测,故障类型分类,故障相位识别和故障位置的可实现的精度为99.27%,98.1%,98.75%和95.6%。

This paper presents a 1-D convolutional graph neural network for fault detection in microgrids. The combination of 1-D convolutional neural networks (1D-CNN) and graph convolutional networks (GCN) helps extract both spatial-temporal correlations from the voltage measurements in microgrids. The fault detection scheme includes fault event detection, fault type and phase classification, and fault location. There are five neural network model training to handle these tasks. Transfer learning and fine-tuning are applied to reduce training efforts. The combined recurrent graph convolutional neural networks (1D-CGCN) is compared with the traditional ANN structure on the Potsdam 13-bus microgrid dataset. The achievable accuracy of 99.27%, 98.1%, 98.75%, and 95.6% for fault detection, fault type classification, fault phase identification, and fault location respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源