论文标题

部分可观测时空混沌系统的无模型预测

Coarse-to-fine Knowledge Graph Domain Adaptation based on Distantly-supervised Iterative Training

论文作者

Cai, Hongmin, Liao, Wenxiong, Liu, Zhengliang, Zhang, Yiyang, Huang, Xiaoke, Ding, Siqi, Ren, Hui, Wu, Zihao, Dai, Haixing, Li, Sheng, Wu, Lingfei, Liu, Ninghao, Li, Quanzheng, Liu, Tianming, Li, Xiang

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Modern supervised learning neural network models require a large amount of manually labeled data, which makes the construction of domain-specific knowledge graphs time-consuming and labor-intensive. In parallel, although there has been much research on named entity recognition and relation extraction based on distantly supervised learning, constructing a domain-specific knowledge graph from large collections of textual data without manual annotations is still an urgent problem to be solved. In response, we propose an integrated framework for adapting and re-learning knowledge graphs from one coarse domain (biomedical) to a finer-define domain (oncology). In this framework, we apply distant-supervision on cross-domain knowledge graph adaptation. Consequently, no manual data annotation is required to train the model. We introduce a novel iterative training strategy to facilitate the discovery of domain-specific named entities and triples. Experimental results indicate that the proposed framework can perform domain adaptation and construction of knowledge graph efficiently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源