论文标题
具有最高学位的图形的适当无冲突着色
Proper Conflict-free Coloring of Graphs with Large Maximum Degree
论文作者
论文摘要
图形的适当着色是\ emph {无冲突},如果对于每个非分离顶点,则精确地在其附近使用了一次颜色。 Caro,Petruševski和škrekovski证明,每个图$ G $具有适当的无冲突着色,最多$5δ(g)/2 $颜色,并猜想$δ(g)+1 $颜色足以满足每一个连接的$ g $,带有$δ(g)fe 3 $。我们的第一个主要结果是,即使对于列表颜色,$ \ weft \ lceil1.6550826Δ(g)+\ sqrt {δ(g)} \ right \ rceil $ colors $ g $的颜色就足够,带有$δ(g)\ ge 10^{8} $;我们还证明,对于所有图表,$δ(g)\ ge 750 $都略有弱。这些结果来自我们对由图$ g $和“冲突” HyperGraph $ {\ Mathcal H} $组成的一对的正确无冲突清单颜色的更通用的框架。作为我们在此一般框架中结果的另一个推论,每个图都有一个正确的$(\ sqrt {30}+o(1))δ(g)^{1.5} $ - 列表颜色的颜色,使每个双重组件都是最多三个顶点的路径,其中颜色的数量最佳,最佳的因子是恒定的。我们的证明使用了一种称为Rosenfeld Counting的相当新的递归计数参数,这是Lovász局部引理或熵压缩的变体。 我们还证明,对于我们的一般框架的分数类似物,对于图形对和冲突超图的适当无冲突着色而言是一个渐近的最佳结果。推论指出,每个图$ g $具有分数$(1+o(1))δ(g)$ - 颜色,使每个分数双重色分组件最多具有两个顶点。特别是,这意味着Caro等人的猜想的分数类似物在很强的意义上渐近地保持。
A proper coloring of a graph is \emph{conflict-free} if, for every non-isolated vertex, some color is used exactly once on its neighborhood. Caro, Petruševski, and Škrekovski proved that every graph $G$ has a proper conflict-free coloring with at most $5Δ(G)/2$ colors and conjectured that $Δ(G)+1$ colors suffice for every connected graph $G$ with $Δ(G)\ge 3$. Our first main result is that even for list-coloring, $\left\lceil 1.6550826Δ(G)+\sqrt{Δ(G)}\right\rceil$ colors suffice for every graph $G$ with $Δ(G)\ge 10^{8}$; we also prove slightly weaker bounds for all graphs with $Δ(G)\ge 750$. These results follow from our more general framework on proper conflict-free list-coloring of a pair consisting of a graph $G$ and a "conflict" hypergraph ${\mathcal H}$. As another corollary of our results in this general framework, every graph has a proper $(\sqrt{30}+o(1))Δ(G)^{1.5}$-list-coloring such that every bi-chromatic component is a path on at most three vertices, where the number of colors is optimal up to a constant factor. Our proof uses a fairly new type of recursive counting argument called Rosenfeld counting, which is a variant of the Lovász Local Lemma or entropy compression. We also prove an asymptotically optimal result for a fractional analogue of our general framework for proper conflict-free coloring for pairs of a graph and a conflict hypergraph. A corollary states that every graph $G$ has a fractional $(1+o(1))Δ(G)$-coloring such that every fractionally bi-chromatic component has at most two vertices. In particular, it implies that the fractional analogue of the conjecture of Caro et al.\ holds asymptotically in a strong sense.