论文标题
无代数,代数和花圈产品中间和振荡生长
Nil algebras, Lie algebras and wreath products with intermediate and oscillating growth
论文作者
论文摘要
我们以规定的增长率构建有限生成的无代数。特别是,任何增加的副函数均被实现为零代数的生长函数,直到多项式误差项和任意缓慢的失真。然后,我们继续讲述具有强烈振荡生长功能的零代数和域的示例,并构建原始代数,而Gelfand-Kirillov dimension在张张产品方面严格对张量相对于张量,从而回答了Krempa-Okninski和Krause-Lenagan提出的问题。
We construct finitely generated nil algebras with prescribed growth rate. In particular, any increasing submultiplicative function is realized as the growth function of a nil algebra up to a polynomial error term and an arbitrarily slow distortion. We then move on to examples of nil algebras and domains with strongly oscillating growth functions and construct primitive algebras for which the Gelfand-Kirillov dimension is strictly sub-additive with respect to tensor products, thus answering a question raised by Krempa-Okninski and Krause-Lenagan.