论文标题

一定确定的分配$ \ ell $ -Magmas和Bunched含义代数的品种

Varieties of unary-determined distributive $\ell$-magmas and bunched implication algebras

论文作者

Alpay, Natanael, Jipsen, Peter, Sugimoto, Melissa

论文摘要

分布式格子订购的岩浆($ d \ ell $ -magma)$(a,\ wedge,\ vee,\ cdot)$是一个带有二进制操作$ \ cdot $的分布晶格,可以保留两种参数的汇合,当$ \ cdot $是$ \ cdot $时,然后是$ \ cdot $ nes $(a,\ vee sement $ sement $ sement $ sele \ cdem as ind Idem as ind Idem)如果$ x {\ cdot} y =(x {\ cdot} \!\ top \ top \ wedge y)$ x {x \ wedge \ wedge \ wedge \ top \ top \!{\ cdot} y)a $ d \ ell $ -magma带有顶部$ \ top $的top $ top $是一致确定的。这些代数与具有$ \ top $的分布晶格和两个Join Preverving Unary Operations $ \ MATHSF P,\ MATHSF Q $相同。我们在$ \ mathsf p,\ mathsf q $上获得了简单的条件,以便$ x {\ cdot} y =(\ Mathsf px \ wedge y)\ vee(x \ wedge \ wedge \ mathsf qy)$是关联的,交换的,交换的,eDempotent的,edempotent and andempotent and and/of/or/or/or/of/of/or具有身份元素。 这概括了以前的结果,对双能的半肌的结构进行了概括,并且在分布晶格是一个兴高采烈的代数时,它为构成含义的含义逻辑提供了结构性洞察力。我们还为正在考虑的代数提供Kripke语义,这导致更有效的算法构建有限模型。我们发现所有细微的不可约定的代数直至基数八,其中$ \ mathsf p = \ mathsf q $都是封闭操作员,以及所有有限的一项单一确定的束缚含义链,并绘制出它们生成的连接性品种的poset。

A distributive lattice-ordered magma ($d\ell$-magma) $(A,\wedge,\vee,\cdot)$ is a distributive lattice with a binary operation $\cdot$ that preserves joins in both arguments, and when $\cdot$ is associative then $(A,\vee,\cdot)$ is an idempotent semiring. A $d\ell$-magma with a top $\top$ is unary-determined if $x{\cdot} y=(x{\cdot}\!\top\wedge y)$ $\vee(x\wedge \top\!{\cdot}y)$. These algebras are term-equivalent to a subvariety of distributive lattices with $\top$ and two join-preserving unary operations $\mathsf p,\mathsf q$. We obtain simple conditions on $\mathsf p,\mathsf q$ such that $x{\cdot} y=(\mathsf px\wedge y)\vee(x\wedge \mathsf qy)$ is associative, commutative, idempotent and/or has an identity element. This generalizes previous results on the structure of doubly idempotent semirings and, in the case when the distributive lattice is a Heyting algebra, it provides structural insight into unary-determined algebraic models of bunched implication logic. We also provide Kripke semantics for the algebras under consideration, which leads to more efficient algorithms for constructing finite models. We find all subdirectly irreducible algebras up to cardinality eight in which $\mathsf p=\mathsf q$ is a closure operator, as well as all finite unary-determined bunched implication chains and map out the poset of join-irreducible varieties generated by them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源