论文标题
非辅助相互作用解锁了二元胶体单层中的天粒子迁移率
Nonadditive Interactions Unlock Small-Particle Mobility in Binary Colloidal Monolayers
论文作者
论文摘要
我们研究了由微米尺度二氧化硅颗粒组成的二元胶体单层的组织和动力学,这些二粒硅颗粒与较小直径的二氧化硅颗粒散布在一起,这些硅颗粒用作少数族裔杂质。这些二进制单层是在离子液滴表面制备的,该尺寸比($σ= 0.16-0.66 $),并使用低剂量的最小扰动扫描电子显微镜(SEM)进行了研究。 SEM成像的高分辨率随着时间的推移提供了所有粒子坐标的直接跟踪,从而可以对微观状态进行完整描述。在这些bidisperse大小的混合物中,粒子相互作用是非加性的,因为将界面夹在液滴表面上会导致不同大小的颗粒的赤道位于单独的平面中。通过改变尺寸比,我们可以控制非添加性的程度,以实现对添加2D系统无法访问的相行为。在尺寸比的范围内,我们将系统从移动的天粒子相($σ<0.24 $)($ 0.24 <σ<0.33 $)到无序玻璃($σ> 0.33 $)调整。通过测量大粒子宿主晶格的六边形排序和晶格的天颗粒运输能力,将这些不同的相位机制分类。总的来说,我们通过考虑颗粒间相互作用和胶体填料几何形状的综合影响来解释这些结构和动态趋势。我们的测量值是在2D非添加磁盘的分子动力学模拟中复制的,这表明了一种有效的方法来描述具有降低尺寸表示的密闭系统。
We examine the organization and dynamics of binary colloidal monolayers composed of micron-scale silica particles interspersed with smaller-diameter silica particles that serve as minority component impurities. These binary monolayers are prepared at the surface of ionic liquid droplets over a range of size ratios ($σ=0.16-0.66$) and are studied with low-dose minimally perturbative scanning electron microscopy (SEM). The high resolution of SEM imaging provides direct tracking of all particle coordinates over time, enabling a complete description of the microscopic state. In these bidisperse size mixtures, particle interactions are non-additive because interfacial pinning to the droplet surface causes the equators of differently sized particles to lie in separate planes. By varying the size ratio we control the extent of non-additivity in order to achieve phase behavior inaccessible to additive 2D systems. Across the range of size ratios we tune the system from a mobile small-particle phase ($σ<0.24$), to an interstitial solid ($0.24<σ<0.33$), to a disordered glass ($σ>0.33$). These distinct phase regimes are classified through measurements of hexagonal ordering of the large-particle host lattice and the lattice's capacity for small-particle transport. Altogether, we explain these structural and dynamic trends by considering the combined influence of interparticle interactions and the colloidal packing geometry. Our measurements are reproduced in molecular dynamics simulations of 2D non-additive disks, suggesting an efficient method for describing confined systems with reduced dimensionality representations.