论文标题

深距离灵敏度甲骨文

Deep Distance Sensitivity Oracles

论文作者

Jeong, Davin, Gunby-Mann, Allison, Cohen, Sarel, Katzmann, Maximilian, Pham, Chau, Bhakta, Arnav, Friedrich, Tobias, Chin, Sang

论文摘要

最基本的图形问题之一是找到从源到目标节点的最短路径。尽管以基本形式进行了广泛研究,并且已经知道了有效的算法,但一旦图表的一部分易受故障,它就会变得更加困难。尽管每次中断后都可以重新计算最短的替换路径,但这在时间和/或存储中效率相当低。克服此问题的一种方法是将计算负担从查询转移到预处理步骤中,其中计算数据结构,该步骤允许快速查询替换路径,通常称为距离灵敏度Oracle(DSO)。虽然DSO在理论计算机科学界进行了广泛的研究,但据我们所知,这是第一项使用深度学习技术构建DSO的工作。我们展示了如何使用深度学习来利用替代路径的组合结构。更具体地说,我们利用替换路径的组合结构作为最短路径的串联,并使用深度学习来找到枢轴节点,以将最短路径缝合到替换路径中。

One of the most fundamental graph problems is finding a shortest path from a source to a target node. While in its basic forms the problem has been studied extensively and efficient algorithms are known, it becomes significantly harder as soon as parts of the graph are susceptible to failure. Although one can recompute a shortest replacement path after every outage, this is rather inefficient both in time and/or storage. One way to overcome this problem is to shift computational burden from the queries into a pre-processing step, where a data structure is computed that allows for fast querying of replacement paths, typically referred to as a Distance Sensitivity Oracle (DSO). While DSOs have been extensively studied in the theoretical computer science community, to the best of our knowledge this is the first work to construct DSOs using deep learning techniques. We show how to use deep learning to utilize a combinatorial structure of replacement paths. More specifically, we utilize the combinatorial structure of replacement paths as a concatenation of shortest paths and use deep learning to find the pivot nodes for stitching shortest paths into replacement paths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源