论文标题
搜索来自二进制黑洞事件的重力波中的微透镜签名
Search for Microlensing Signature in Gravitational Waves from Binary Black Hole Events
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In a recent search (Kim et al. 2022), we looked for microlensing signature in gravitational waves from spectrograms of the binary black hole events in the first and second gravitational-wave transient catalogs. For the search, we have implemented a deep learning-based method (Kim et al. 2021) and figured out that one event, GW190707 093326, out of forty-six events, is classified into the lensed class. However, upon estimating the p-value of this event, we observed that the uncertainty of the p-value still includes the possibility of the event being unlensed. Therefore, we concluded that no significant evidence of beating patterns from the evaluated binary black hole events has found from the search. For a consequence study, we discuss the distinguishability between microlensed gravitational waves and the signal from precessing black hole binaries.