论文标题

使用量子启发的优化算法解决子集总和问题,并在审核和财务数据中应用

Solving Subset Sum Problems using Quantum Inspired Optimization Algorithms with Applications in Auditing and Financial Data Analysis

论文作者

Biesner, David, Gerlach, Thore, Bauckhage, Christian, Kliem, Bernd, Sifa, Rafet

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Many applications in automated auditing and the analysis and consistency check of financial documents can be formulated in part as the subset sum problem: Given a set of numbers and a target sum, find the subset of numbers that sums up to the target. The problem is NP-hard and classical solving algorithms are therefore not practical to use in many real applications. We tackle the problem as a QUBO (quadratic unconstrained binary optimization) problem and show how gradient descent on Hopfield Networks reliably finds solutions for both artificial and real data. We outline how this algorithm can be applied by adiabatic quantum computers (quantum annealers) and specialized hardware (field programmable gate arrays) for digital annealing and run experiments on quantum annealing hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源