论文标题
情感识别在自然主义背景下暂时定位的“情感事件”
Emotion Recognition With Temporarily Localized 'Emotional Events' in Naturalistic Context
论文作者
论文摘要
使用脑电图信号的情绪识别是一个新兴领域,因为它在BCI中的广泛适用性。在实验室中很难刺激情感感受。情绪不会持续很长时间,但他们需要足够的背景才能被感知和感受。但是,大多数与EEG相关的情绪数据库都遭受情感上无关的细节(由于持续时间刺激),或者具有最小的环境,以怀疑使用刺激的任何情感的感觉。我们试图通过设计一个实验来减少这种权衡的影响,在该实验中,参与者可以自由地报告自己的情感感觉,同时观看情感刺激。我们称这些报道的情感情绪为“情感事件”,“情感事件”关于自然主义刺激(Dens)的情感。我们使用脑电图信号将情绪事件分类为价(V)和唤醒(a)维度的不同组合,并将结果与DEAP和SEED的基准数据集进行了比较。 STFT用于特征提取,并用于由CNN-LSTM杂种层组成的分类模型。与深层和种子数据相比,我们的数据准确性明显更高。我们得出的结论是,与长时间的脑电图信号相比,有关情感感受的精确信息可以提高分类的精度,而脑电图可能会因危险而污染。
Emotion recognition using EEG signals is an emerging area of research due to its broad applicability in BCI. Emotional feelings are hard to stimulate in the lab. Emotions do not last long, yet they need enough context to be perceived and felt. However, most EEG-related emotion databases either suffer from emotionally irrelevant details (due to prolonged duration stimulus) or have minimal context doubting the feeling of any emotion using the stimulus. We tried to reduce the impact of this trade-off by designing an experiment in which participants are free to report their emotional feelings simultaneously watching the emotional stimulus. We called these reported emotional feelings "Emotional Events" in our Dataset on Emotion with Naturalistic Stimuli (DENS). We used EEG signals to classify emotional events on different combinations of Valence(V) and Arousal(A) dimensions and compared the results with benchmark datasets of DEAP and SEED. STFT is used for feature extraction and used in the classification model consisting of CNN-LSTM hybrid layers. We achieved significantly higher accuracy with our data compared to DEEP and SEED data. We conclude that having precise information about emotional feelings improves the classification accuracy compared to long-duration EEG signals which might be contaminated by mind-wandering.