论文标题

使用INLA:应用到模拟星系的空间场重建

Spatial field reconstruction with INLA: Application to simulated galaxies

论文作者

Smole, Majda, Rino-Silvestre, João, González-Gaitán, Santiago, Stalevski, Marko

论文摘要

目标。蒙特卡洛辐射转移(MCRT)模拟是了解尘埃在天体物理系统中的作用及其对观测的影响的强大工具。但是,由于整个计算领域的辐射场和培养基的强耦合,因此问题是非本地和非线性的,并且在发生现实的3D不均匀灰尘分布的情况下,这种模拟在计算上是昂贵的。我们探索了一种新的技术,用于后处理MCRT输出,以减少计算较低质量较低质量的计算较低的模拟的输出,以减少总计算运行时间。 方法。我们将主要成分分析(PCA)和非负矩阵分解(NMF)与高斯马尔可夫随机场以及集成的嵌套拉普拉斯近似(INLA)(INLA),这是贝叶斯推理的近似方法,以检测和重建较低的信号数据的非兰加型结构,或者在较低的信号数据中,或重建了较低的信号 - 或重建较低的信号数据。 结果。我们使用裙子Auriga项目的星系的合成观察结果测试我们的方法,这是一套高分辨率的磁磁动力银河系大小的星系,该星系在宇宙学环境中通过“ Zoom-In”技术模拟。使用这种方法,我们能够以低于$ \ sim20 \%$的中值残差来复制高光子号参考图像$ \ sim5 $ times。

Aims. Monte Carlo Radiative Transfer (MCRT) simulations are a powerful tool for understanding the role of dust in astrophysical systems and its influence on observations. However, due to the strong coupling of the radiation field and medium across the whole computational domain, the problem is non-local and non-linear and such simulations are computationally expensive in case of realistic 3D inhomogeneous dust distributions. We explore a novel technique for post-processing MCRT output to reduce the total computational run time by enhancing the output of computationally less expensive simulations of lower-quality. Methods. We combine principal component analysis (PCA) and non-negative matrix factorization (NMF) as dimensionality reduction techniques together with Gaussian Markov random fields and the Integrated nested Laplace approximation (INLA), an approximate method for Bayesian inference, to detect and reconstruct the non-random spatial structure in the images of lower signal-to-noise or with missing data. Results. We test our methodology using synthetic observations of a galaxy from the SKIRT Auriga project - a suite of high resolution magneto-hydrodynamic Milky Way-sized galaxies simulated in cosmological environment by 'zoom-in' technique. With this approach, we are able to reproduce high photon number reference images $\sim5$ times faster with median residuals below $\sim20\%$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源