论文标题
好奇心驱动的搜索新型的非平衡行为
Curiosity-driven search for novel non-equilibrium behaviors
论文作者
论文摘要
探索物理系统可以产生的新型行为可能是劳动密集型的任务。主动学习是针对这一挑战而开发的迭代抽样技术的集合。但是,这些技术通常需要一个预定义的度量,例如已知顺序参数空间中的距离,以指导搜索新行为。订单参数很少以非平衡系统为先验,尤其是当可能的行为也未知时,造成了鸡肉和蛋的问题。在这里,我们将主动和无监督的学习结合在一起,以自动探索具有未知顺序参数的非平衡系统中的新型行为。我们根据当前订单参数迭代使用主动学习来扩展已知行为的库,然后根据此扩展的库重新学习订单参数。我们证明了这种方法在增加复杂性的耦合振荡器的库拉莫托模型中的实用性。除了再现已知阶段外,我们还揭示了先前未知的行为和相关顺序参数。
Exploring the spectrum of novel behaviors a physical system can produce can be a labor-intensive task. Active learning is a collection of iterative sampling techniques developed in response to this challenge. However, these techniques often require a pre-defined metric, such as distance in a space of known order parameters, in order to guide the search for new behaviors. Order parameters are rarely known for non-equilibrium systems a priori, especially when possible behaviors are also unknown, creating a chicken-and-egg problem. Here, we combine active and unsupervised learning for automated exploration of novel behaviors in non-equilibrium systems with unknown order parameters. We iteratively use active learning based on current order parameters to expand the library of known behaviors and then relearn order parameters based on this expanded library. We demonstrate the utility of this approach in Kuramoto models of coupled oscillators of increasing complexity. In addition to reproducing known phases, we also reveal previously unknown behavior and the related order parameter.