论文标题

VAID:视觉分析系统中的索引视图设计

VAID: Indexing View Designs in Visual Analytics System

论文作者

Ying, Lu, Wu, Aoyu, Li, Haotian, Deng, Zikun, Lan, Ji, Wu, Jiang, Wang, Yong, Qu, Huamin, Deng, Dazhen, Wu, Yingcai

论文摘要

视觉分析(VA)系统已被广泛用于各种应用领域。但是,VA系统的设计很复杂,这引起了一个严重的问题:尽管学术界不断设计和实施新的设计,但随后的设计师很难查询,理解和参考这些设计。为了标志着解决此问题的重要一步,我们以表达和易于访问的方式索引VA设计,将设计转换为结构化格式。我们首先与VA设计师进行了研讨会研究,以了解在VA系统中理解和检索专业设计的用户要求。此后,我们提出了一个索引结构,以描述高级和合成的可视化设计,并具有有关其分析任务和视觉设计的全面标签。 VAID的实用性通过用户研究验证。我们的作品开辟了新的观点,以增强专业可视化设计的可访问性和可重复性。

Visual analytics (VA) systems have been widely used in various application domains. However, VA systems are complex in design, which imposes a serious problem: although the academic community constantly designs and implements new designs, the designs are difficult to query, understand, and refer to by subsequent designers. To mark a major step forward in tackling this problem, we index VA designs in an expressive and accessible way, transforming the designs into a structured format. We first conducted a workshop study with VA designers to learn user requirements for understanding and retrieving professional designs in VA systems. Thereafter, we came up with an index structure VAID to describe advanced and composited visualization designs with comprehensive labels about their analytical tasks and visual designs. The usefulness of VAID was validated through user studies. Our work opens new perspectives for enhancing the accessibility and reusability of professional visualization designs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源