论文标题
贝叶斯设计复制研究的方法
Bayesian Approaches to Designing Replication Studies
论文作者
论文摘要
复制研究对于评估原始研究索赔的信誉至关重要。设计复制研究的一个关键方面是确定其样本量。样本量太小可能会导致不确定的研究,而样本量太大可能会浪费在其他研究中可以更好地分配的资源。在这里,我们展示了如何使用贝叶斯方法来解决此问题。贝叶斯框架允许研究人员将原始数据和外部知识结合在基础参数的先验分布中。基于先验的设计,可以对复制数据进行预测,并可以选择复制样本大小以确保复制成功的可能性很高。贝叶斯或非贝斯尼亚标准可以定义复制成功,并且也可以合并不同的标准以满足不同的利益相关者,并基于多种分析方法启用结论性推断。我们研究了在正常正常层次模型中的样本量确定,其中可用分析结果,传统样本量确定是一种特殊情况,在这种情况下,参数值不确定性不确定。我们使用社交行为实验的多站点复制项目中的数据来说明贝叶斯方法如何帮助设计信息丰富且具有成本效益的复制研究。我们的方法可以通过R软件包贝内斯式设计使用。
Replication studies are essential for assessing the credibility of claims from original studies. A critical aspect of designing replication studies is determining their sample size; a too small sample size may lead to inconclusive studies whereas a too large sample size may waste resources that could be allocated better in other studies. Here, we show how Bayesian approaches can be used for tackling this problem. The Bayesian framework allows researchers to combine the original data and external knowledge in a design prior distribution for the underlying parameters. Based on a design prior, predictions about the replication data can be made, and the replication sample size can be chosen to ensure a sufficiently high probability of replication success. Replication success may be defined by Bayesian or non-Bayesian criteria, and different criteria may also be combined to meet distinct stakeholders and enable conclusive inferences based on multiple analysis approaches. We investigate sample size determination in the normal-normal hierarchical model where analytical results are available and traditional sample size determination is a special case where the uncertainty on parameter values is not accounted for. We use data from a multisite replication project of social-behavioral experiments to illustrate how Bayesian approaches can help design informative and cost-effective replication studies. Our methods can be used through the R package BayesRepDesign.