论文标题

通过葡萄方法连贯和不连贯控制驱动的两分开放量子系统的状态制备的最佳控制

Optimal control for state preparation in two-qubit open quantum systems driven by coherent and incoherent controls via GRAPE approach

论文作者

Petruhanov, Vadim, Pechen, Alexander

论文摘要

在这项工作中,我们考虑了一个由连贯和不一致的时间相关控制驱动的两个量子位模型。该系统的动力学由Gorini-Kossakowski-Sudarshan-Lindblad Master方程式支配,在该方程中,连贯的控制进入了汉密尔顿,而不一致的控制又进入了汉密尔顿(通过羊肉移动)和耗散超级操作者。我们考虑了两种与相干控制的物理上不同类别的相互作用,并研究了最佳控制问题的最佳控制问题,因为在最终密度矩阵和给定的目标密度矩阵之间在某些固定目标时间之间最小化了希尔伯特 - 施密特距离的平方。考虑到不连贯的身体含义是时间的非负函数,我们为目标的梯度提供了一个分析表达,并基于适应性的适应性梯度上升脉冲工程(葡萄)开发优化方法。我们研究了在优化的对照组下的von Neumann熵,纯度和一分点降低密度矩阵的演变,并观察到两类与汉密尔顿相互作用的相互作用的葡萄优化行为明显不同。

In this work, we consider a model of two qubits driven by coherent and incoherent time-dependent controls. The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation, where coherent control enters into the Hamiltonian and incoherent control enters into both the Hamiltonian (via Lamb shift) and the dissipative superoperator. We consider two physically different classes of interaction with coherent control and study the optimal control problem of state preparation formulated as minimization of the Hilbert-Schmidt distance's square between the final density matrix and a given target density matrix at some fixed target time. Taking into account that incoherent control by its physical meaning is a non-negative function of time, we derive an analytical expression for the gradient of the objective and develop optimization approaches based on adaptation for this problem of GRadient Ascent Pulse Engineering (GRAPE). We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls and observe a significantly different behavior of GRAPE optimization for the two classes of interaction with coherent control in the Hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源