论文标题
基于电子商务实体键入基于调谐的迅速基于调谐的文本款项模型
Continuous Prompt Tuning Based Textual Entailment Model for E-commerce Entity Typing
论文作者
论文摘要
电子商务的爆炸式增长导致了对产品标题进行处理和分析的必要性,例如在产品标题中打字的实体。但是,电子商务的快速活动导致了新实体的迅速出现,这很难由通用实体键入解决。此外,电子商务中的产品标题与一般域中的文本数据具有截然不同的语言样式。为了处理产品标题中的新实体,并解决电子商务领域中产品标题的特殊语言样式问题,我们提出了我们的文本款项模型,并通过连续及时调整的基于基于迅速调整的假设和用于电子商务实体键入的融合嵌入。首先,我们将键入任务的实体重新出现到文本需要问题中,以处理培训期间不存在的新实体。其次,我们设计了一个模型,可以使用连续的提示调整方法自动生成文本需要假设,该方法可以在没有手动设计的情况下生成更好的文本需要假设。第三,我们利用BERT嵌入的融合嵌入和与两层MLP分类器的嵌入和角色嵌入的嵌入,以解决电子商务中产品名称的语言风格与通用域不同的问题。为了分析每种贡献的效果,我们比较实体键入和文本构图模型的性能,并就连续迅速调整和融合嵌入的消融研究进行消融研究。我们还评估了不同及时模板初始化对连续及时调整的影响。我们显示,与基线BERT实体键入模型相比,我们提出的模型将平均F1得分提高了2%。
The explosion of e-commerce has caused the need for processing and analysis of product titles, like entity typing in product titles. However, the rapid activity in e-commerce has led to the rapid emergence of new entities, which is difficult to be solved by general entity typing. Besides, product titles in e-commerce have very different language styles from text data in general domain. In order to handle new entities in product titles and address the special language styles problem of product titles in e-commerce domain, we propose our textual entailment model with continuous prompt tuning based hypotheses and fusion embeddings for e-commerce entity typing. First, we reformulate the entity typing task into a textual entailment problem to handle new entities that are not present during training. Second, we design a model to automatically generate textual entailment hypotheses using a continuous prompt tuning method, which can generate better textual entailment hypotheses without manual design. Third, we utilize the fusion embeddings of BERT embedding and CharacterBERT embedding with a two-layer MLP classifier to solve the problem that the language styles of product titles in e-commerce are different from that of general domain. To analyze the effect of each contribution, we compare the performance of entity typing and textual entailment model, and conduct ablation studies on continuous prompt tuning and fusion embeddings. We also evaluate the impact of different prompt template initialization for the continuous prompt tuning. We show our proposed model improves the average F1 score by around 2% compared to the baseline BERT entity typing model.