论文标题

基于活性开普勒星星的分形签名作为旋转调制和出色的噪声分类器

Fractal signature as a rotational modulation and stellar noise classifier based on the active Kepler stars

论文作者

Filho, Paulo Cleber Farias da Silva, Junior, Jose Ribamar Dantas Silveira, Alves, Bricio Warney de Freitas, Filho, Fernando Jose Silva Lima, Ferreira, Vitor Marcelo Belo, Rios, Luiz Daniel Alves, Santiago, Thiago de Melo, de Freitas, Daniel Brito

论文摘要

在这项研究中,我们报告了对三类的太阳附近的701颗恒星的分析,即基于从开普勒任务的公共档案的时间序列推断出的旋转调制特征,在1到70天之间的旋转期间,旋转周期为1至70天,旋转周期为1至70天。在我们的分析中,我们根据旋转周期和位置在时期H图中进行了初始选择,其中H表示从分形分析中提取的Hurst指数。为了完善我们的分析,我们采用了一种称为r/s方法的分形方法,考虑了与光度调制相关的特征的波动,以不同的时间间隔以及样品的时间序列中存在的分形痕迹。从这个意义上讲,我们计算了推荐恒星的所谓赫斯特指数,发现它可以提供强烈的旋转调制和背景噪声行为的歧视,超出了仅使用旋转周期本身就可以实现的目标。此外,我们的结果强调,恒星的旋转周期由指数H缩放,该指数H在旋转期间增加后增加。最后,我们的方法表明,引用指数可能是强大的旋转调制和噪声分类器。

In this study, we report on the analysis of 701 stars in a solar vicinity defined in three categories namely subsolar, solar, and supersolar with rotation periods between 1 and 70 days, based on rotational modulation signatures inferred from time series from the Kepler mission's Public Archives. In our analysis, we performed an initial selection based on the rotation period and position in the period-H diagram, where H denotes the Hurst exponent extracted from fractal analysis. To refine our analysis, we applied a fractal approach known as the R/S method, taking into account the fluctuations of the features associated with photometric modulation at different time intervals and the fractality traces that are present in the time series of our sample. In this sense, we computed the so-called Hurst exponent for the referred stars and found that it can provide a strong discriminant of rotational modulation and background noise behavior, going beyond what can be achieved with solely the rotation period itself. Furthermore, our results emphasize that the rotation period of stars is scaled by the exponent H which increases following the increase in the rotation period. Finally, our approach suggests that the referred exponent may be a powerful rotational modulation and noise classifier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源