论文标题

对随机过程的STL要求的保形定量预测性监测

Conformal Quantitative Predictive Monitoring of STL Requirements for Stochastic Processes

论文作者

Cairoli, Francesca, Paoletti, Nicola, Bortolussi, Luca

论文摘要

我们考虑预测性监视(PM)的问题,即在运行时预测当前系统状态所需属性的满意度。由于其与运行时安全性和在线控制的相关性,PM方法需要有效地及时地进行预测违规行为,同时提供正确的保证。我们介绍了\ textIt {定量预测监控(qpm)},这是支持随机过程和信号时间逻辑(STL)中给出的丰富规范的第一个PM方法。与大多数预测是否满足某些属性$ ϕ $的现有PM技术不同,QPM通过预测$ ϕ $的定量(又称鲁棒)STL语义来提供量化满意度的定量度量。 QPM得出了高效计算和概率保证的预测间隔,因为间隔覆盖了与系统随机演变相对于系统的随机演变的任意概率。为此,我们采用机器学习方法,并利用了对分位数回归的共形推断的最新进展,从而避免了运行时昂贵的蒙特卡罗模拟来估计间隔。我们还展示了如何以组成方式组合监视器来处理复合公式,而无需重新审阅预测因子或牺牲保证。我们证明了QPM在四个离散时间随机过程的基准上具有不同程度的复杂性的有效性和可伸缩性。

We consider the problem of predictive monitoring (PM), i.e., predicting at runtime the satisfaction of a desired property from the current system's state. Due to its relevance for runtime safety assurance and online control, PM methods need to be efficient to enable timely interventions against predicted violations, while providing correctness guarantees. We introduce \textit{quantitative predictive monitoring (QPM)}, the first PM method to support stochastic processes and rich specifications given in Signal Temporal Logic (STL). Unlike most of the existing PM techniques that predict whether or not some property $ϕ$ is satisfied, QPM provides a quantitative measure of satisfaction by predicting the quantitative (aka robust) STL semantics of $ϕ$. QPM derives prediction intervals that are highly efficient to compute and with probabilistic guarantees, in that the intervals cover with arbitrary probability the STL robustness values relative to the stochastic evolution of the system. To do so, we take a machine-learning approach and leverage recent advances in conformal inference for quantile regression, thereby avoiding expensive Monte-Carlo simulations at runtime to estimate the intervals. We also show how our monitors can be combined in a compositional manner to handle composite formulas, without retraining the predictors nor sacrificing the guarantees. We demonstrate the effectiveness and scalability of QPM over a benchmark of four discrete-time stochastic processes with varying degrees of complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源