论文标题
高阶拓扑问题和分数性手性状态
Higher order topological matter and fractional chiral states
论文作者
论文摘要
我们开发了一种手性异常的费米·哈密顿(Hamiltonian)建议,以研究具有手性对称$ \ Mathcal {C} $分数化的高阶拓扑(热)阶段,例如$ \ Mathcal {C} _ {x} _ {x} \ Mathcal {c} _ {c} _ {y} _ {y} _ {y} \ Mathcal}首先,我们解决了$ \ Mathcal {C} $ - 八个频段模型的手性对称约束,并描述由部分$ \ Mathcal {C} _ {i} $引起的。然后,我们确定了表征热物质的分数状态的明确表达,并评论了它们之间的关系以及与标准的Altland-Zirnbauer无间隙模式。我们还赋予无间隙分数状态的特性特性,并计算它们对手性模型拓扑指数的贡献。这项工作的发现被证明对于研究和处理高阶拓扑阶段至关重要。
We develop a chiral anomalous fermion hamiltonian proposal to study the higher order topological (HOT) phase with chiral symmetry $\mathcal{C}$ fractionalized like $\mathcal{C}_{x}\mathcal{C}_{y}\mathcal{C}_{z}$. First, we solve the $\mathcal{C}$-chiral symmetry constraint for eight band models and describe those induced by the partial $\mathcal{C}_{i}$'s. Then, we determine the explicit expression of fractional states characterising HOT matter and comment on the relationships amongst them and with the standard Altland-Zirnbauer gapless modes. We also give characteristic properties of the gapless fractional states and compute their contribution to the topological index of the chiral model. The findings of this work are shown to be crucial for investigating and handling high order topological phase.