论文标题

部分可观测时空混沌系统的无模型预测

Binaural Rendering of Ambisonic Signals by Neural Networks

论文作者

Zhu, Yin, Kong, Qiuqiang, Shi, Junjie, Liu, Shilei, Ye, Xuzhou, Wang, Ju-chiang, Zhang, Junping

论文摘要

Ambisonic信号的双耳渲染是虚拟现实和身临其境媒体的广泛关注。常规方法通常需要手动测量的与头部相关的传递功能(HRTF)。为了解决这个问题,我们收集了配对的Ambisonic-Bina数据集,并以端到端的方式提出了一个深度学习框架。实验结果表明,神经网络的表现优于客观指标的常规方法,并且实现了可比的主观指标。为了验证提出的框架,我们在实验上探索了输入特征,模型结构,输出功能和损失功能的不同设置。我们提出的系统的SDR为7.32,苔藓为3.83、3.58、3.87、3.58的质量,音色,定位和浸入尺寸。

Binaural rendering of ambisonic signals is of broad interest to virtual reality and immersive media. Conventional methods often require manually measured Head-Related Transfer Functions (HRTFs). To address this issue, we collect a paired ambisonic-binaural dataset and propose a deep learning framework in an end-to-end manner. Experimental results show that neural networks outperform the conventional method in objective metrics and achieve comparable subjective metrics. To validate the proposed framework, we experimentally explore different settings of the input features, model structures, output features, and loss functions. Our proposed system achieves an SDR of 7.32 and MOSs of 3.83, 3.58, 3.87, 3.58 in quality, timbre, localization, and immersion dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源