论文标题
连续的平等背包与概率风格的目标
Continuous Equality Knapsack with Probit-Style Objectives
论文作者
论文摘要
我们研究了连续的,平等的背包问题,具有均匀的可分离,非凸的目标函数,这些函数是连续的,对某个点的反对称性,并且具有凹形和凸区域。例如,该模型捕获了一个简单的分配问题,其目标是优化期望值,而目标是相同分布的正常分布的累积分布函数的总和(即,逆向概率函数的总和)。我们在一般假设下证明了该模型的结构结果,并提供了两种算法以进行有效的优化:(1)在线性时间和(2)以恒定数量的操作中运行,并给出了对目标函数的预处理。
We study continuous, equality knapsack problems with uniform separable, non-convex objective functions that are continuous, antisymmetric about a point, and have concave and convex regions. For example, this model captures a simple allocation problem with the goal of optimizing an expected value where the objective is a sum of cumulative distribution functions of identically distributed normal distributions (i.e., a sum of inverse probit functions). We prove structural results of this model under general assumptions and provide two algorithms for efficient optimization: (1) running in linear time and (2) running in a constant number of operations given preprocessing of the objective function.