论文标题
内气球中电子的热能预算:帕克太阳能探测观测
Thermal energy budget of electrons in the inner heliosphere: Parker Solar Probe Observations
论文作者
论文摘要
我们使用Parker太阳能探针的数据对电子热能预算进行了观察分析。我们使用从我们的拟合到测量的电子分布函数获得的宏观力矩,根据Boltzmann方程的第二刻来评估热能预算。我们将对整体预算的贡献与可逆和不可逆的流程分开。我们发现,不可逆转的热能源必须存在于内心距离范围为0.15至0.47 au。热通量的差异在低于0.33 au的地球距离处为正,而超过0.33 au,热通量有可测量的降解。扩展效应主导了低于0.3 au的热能预算。在我们的稳态假设下,电子的自由流不足以解释观察到的热能密度预算。我们猜测,所需的加热过程最有可能的驱动因素是湍流。我们的结果与电子的已知非绝热多环反应指数一致,我们在探索的HeliePentric距离范围内将其测量为1.18。
We present an observational analysis of the electron thermal energy budget using data from Parker Solar Probe. We use the macroscopic moments, obtained from our fits to the measured electron distribution function, to evaluate the thermal energy budget based on the second moment of the Boltzmann equation. We separate contributions to the overall budget from reversible and irreversible processes. We find that an irreversible thermal energy source must be present in the inner heliosphere over the heliocentric distance range from 0.15 to 0.47 au. The divergence of the heat flux is positive at heliocentric distances below 0.33 au, while beyond 0.33 au, there is a measurable degradation of the heat flux. Expansion effects dominate the thermal energy budget below 0.3 au. Under our steady-state assumption, the free streaming of the electrons is not sufficient to explain the observed thermal energy density budget. We conjecture that the most likely driver for the required heating process is turbulence. Our results are consistent with the known nonadiabatic polytropic index of the electrons, which we measure as 1.18 in the explored range of heliocentric distances.