论文标题
电子尺度的tokamak湍流中的区域流动激发
Zonal Flow Excitation in Electron-Scale Tokamak Turbulence
论文作者
论文摘要
中等规模的陀螺仪 - 电子理论在非均匀Tokamak等离子体中的推导[Chen H.等2021 Nucl。 Fusion 61 066017]表明,Navier-Stokes类型的非线性夫妇电子 - 温度梯度(ETG)模式(ETG)模式和区域流量(ZF)模式(ZF)模式比离子Gyroradius短得多,但比Electron Gyroradius更长。这种中间尺度的ETG-ZF耦合通常比谷川MIMA类型的非线性特征强,并且预计会导致相关的区域流量产生和ETG模式调节。此处介绍了电子尺度,连续性,陀螺仪仿真结果,其中包括单模ETG和全光谱ETG湍流。研究了单个ETG模式引起的区域流量产生,并发现单模中间尺度结果与理论一致。然后,根据单模式的结果,呈现全光谱的结果并定性地解释。发现由ETG驱动的区域流将中间尺度的电子热通量传输到预测范围内的水平。
The derivation of an intermediate-scale gyrokinetic-electron theory in nonuniform tokamak plasmas [Chen H. et al 2021 Nucl. Fusion 61 066017] has shown that a Navier-Stokes type nonlinearity couples electron-temperature-gradient (ETG) modes and zonal flow (ZF) modes with wavelengths much shorter than the ion gyroradius but much longer than the electron gyroradius. This intermediate-scale ETG-ZF coupling is typically stronger than the Hasegawa-Mima type nonlinearity characteristic of the fluid approximation and is predicted to lead to relevant zonal flow generation and ETG mode regulation. Electron-scale, continuum, gyrokinetic simulation results are presented here which include both single-mode ETG and full-spectrum ETG turbulence. The zonal flow generation due to single ETG modes is investigated and the single-mode intermediate-scale results are found to be in agreement with theory. The full-spectrum results are then presented and explained qualitatively in terms of the single-mode results. It is found that the ETG-driven zonal flows regulate intermediate-scale electron heat flux transport to levels in the predicted range.