论文标题
经过验证的拜占庭异步多维一致性一致
Validated Byzantine Asynchronous Multidimensional Approximate Agreement
论文作者
论文摘要
考虑一个异步系统,每个节点在$ \ mathbb {r}^m $中以某个点开头。给定一些固定的$ε> 0 $,我们希望让每个非故障节点最终在$ \ mathbb {r}^m $中输出一个点,其中所有输出都在彼此的距离$ε$之内,并且在原始非伪造输入的凸面内。当某些节点是对抗性时,这个问题被称为``拜占庭异步多维近似协议''问题。 Mendes等人的先前具有里程碑意义的工作。和Vaidya等。提出了两个解决方案。这两种解决方案都需要每个回合中的每个节点的指数计算。此外,这项工作提供了一个下限,表明如果$ n \ leq(m+2)t $,无法解决近似协议的任务,因此协议假定$ n>(m+2)t $。 我们提出了在Cachin等人的经过验证的设置中,拜占庭异步多维近似协议方案。我们的协议在对数数量的回合数之后终止,并且在每个回合中仅需要多项式计算。此外,它具有弹性,可抗$ t <\ frac {n} {3} $ byzantine节点,我们在验证的设置中被证明是最佳的。换句话说,在经过验证的设置中处理任务的工作使我们能够在几个重要的指标中显着改善以前的作品。此外,本文介绍的技术可以轻松地在原始的非验证设置中产生协议,该设置仅在第一轮中需要指数计算,而在随后的每一轮比赛中进行多项式计算。
Consider an asynchronous system where each node begins with some point in $\mathbb{R}^m$. Given some fixed $ε> 0$, we wish to have every nonfaulty node eventually output a point in $\mathbb{R}^m$, where all outputs are within distance $ε$ of each other, and are within the convex hull of the original nonfaulty inputs. This problem, when some of the nodes are adversarial, is known as the ``Byzantine Asynchronous Multidimensional Approximate Agreement'' problem. Previous landmark work by Mendes et al. and Vaidya et al. presented two solutions to the problem. Both of these solutions require exponential computation by each node in each round. Furthermore, the work provides a lower bound showing that it is impossible to solve the task of approximate agreement if $n\leq (m+2)t$, and thus the protocols assume that $n>(m+2)t$. We present a Byzantine Asynchronous Multidimensional Approximate Agreement protocol in the validated setting of Cachin et al. Our protocol terminates after a logarithmic number of rounds, and requires only polynomial computation in each round. Furthermore, it is resilient to $t<\frac{n}{3}$ Byzantine nodes, which we prove to be optimal in the validated setting. In other words, working on the task in the validated setting allows us to significantly improve on previous works in several significant metrics. In addition, the techniques presented in this paper can easily yield a protocol in the original non-validated setting which requires exponential computation only in the first round, and polynomial computation in every subsequent round.