论文标题
超越MMWave的基于密码手册的模拟波束形成:压缩感应和机器学习方法
Beyond Codebook-Based Analog Beamforming at mmWave: Compressed Sensing and Machine Learning Methods
论文作者
论文摘要
鉴于其对限量资源设备的有利特征,模拟波束形成是毫米波(MMWave)通信的主要方法。在这项工作中,我们旨在降低模拟和数字波束方法之间的光谱效率差距。我们提出了一种基于估计的原始通道进行精制光束选择的方法。通道估计是一个不确定的问题,使用压缩传感(CS)方法来解决通道的角域稀疏度。为了降低CS方法的复杂性,我们提出了词典学习迭代软阈值算法,该算法共同学习了稀疏的词典和信号重建。我们在现实的MMWave设置上评估了所提出的方法,并在基于代码书的模拟面对形成方法方面显示出可观的性能改进。
Analog beamforming is the predominant approach for millimeter wave (mmWave) communication given its favorable characteristics for limited-resource devices. In this work, we aim at reducing the spectral efficiency gap between analog and digital beamforming methods. We propose a method for refined beam selection based on the estimated raw channel. The channel estimation, an underdetermined problem, is solved using compressed sensing (CS) methods leveraging angular domain sparsity of the channel. To reduce the complexity of CS methods, we propose dictionary learning iterative soft-thresholding algorithm, which jointly learns the sparsifying dictionary and signal reconstruction. We evaluate the proposed method on a realistic mmWave setup and show considerable performance improvement with respect to code-book based analog beamforming approaches.