论文标题

地球轨道空间和相关伪里曼尼亚歧管的家族

Families of Geodesic Orbit Spaces and Related Pseudo-Riemannian Manifolds

论文作者

Wolf, Joseph A.

论文摘要

两个同质的伪riemannian流形$(g/h,ds^2)$和$(g'/h',ds'^2)$属于相同{\ it real form family},如果它们的复杂化$(g _ {\ mathbb c} $(g'_ {\ Mathbb C}/H'_ {\ Mathbb C},DS'^2 _ {\ Mathbb C})$是等值的。关键是,在许多情况下,特定空间$(g/h,ds^2)$具有有趣的属性,并且这些属性适用于其真实形式家族的空间。在这里,我们证明,如果$(g/h,ds^2)$是一个地理轨道空间,具有还原分解$ \ mathfrak {g} = \ mathfrak {h} + \ mathfrak {m Mathfrak {m} $,那么同一成员也占据了其真实形式的家族的所有成员。特别地,我们对紧凑的大地测量轨道riemannian歧管的理解提供了有关地球轨道伪里人歧管流形的信息。对于自然还原空间,通勤空间以及在大多数情况下,对于弱对称空间,我们还证明了相似的结果。我们以讨论这些真实形式家庭的包含,对D'Atri空间的讨论以及许多开放问题的讨论结束。

Two homogeneous pseudo-riemannian manifolds $(G/H, ds^2)$ and $(G'/H', ds'^2)$ belong to the same {\it real form family} if their complexifications $(G_{\mathbb C}/H_{\mathbb C}, ds_{\mathbb C}^2)$ and $(G'_{\mathbb C}/H'_{\mathbb C}, ds'^2_{\mathbb C})$ are isometric. The point is that in many cases a particular space $(G/H, ds^2)$ has interesting properties, and those properties hold for the spaces in its real form family. Here we prove that if $(G/H, ds^2)$ is a geodesic orbit space with a reductive decomposition $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$, then the same holds all the members of its real form family. In particular our understanding of compact geodesic orbit riemannian manifolds gives information on geodesic orbit pseudo-riemannian manifolds. We also prove similar results for naturally reductive spaces, for commutative spaces, and in most cases for weakly symmetric spaces. We end with a discussion of inclusions of these real form families, a discussion of D'Atri spaces, and a number of open problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源