论文标题
有限的陆路原理超出了弱耦合
Finite-time Landauer principle beyond weak coupling
论文作者
论文摘要
Landauer的原则给出了擦除信息的热力学成本的基本限制。它的饱和需要可逆的等温过程,因此需要无限的时间。我们开发了Landauer原理的有限时间版本,以在单个费米子模式的职业中进行一些编码,该模式可以与储层有很强的耦合。通过求解确切的非平衡动力学,我们通过用于热力学的几何方法来优化慢慢驾驶方式中的擦除过程(将费米昂的能量和系统托架耦合作为控制参数)。我们发现热力学度量和地球方程的分析表达式可以通过数值求解。他们的解决方案产生了最佳过程,使我们能够对Landauer的界限进行有限的时间校正,并完全考虑到非马克维亚和强耦合效应。
Landauer's principle gives a fundamental limit to the thermodynamic cost of erasing information. Its saturation requires a reversible isothermal process, and hence infinite time. We develop a finite-time version of Landauer's principle for a bit encoded in the occupation of a single fermionic mode, which can be strongly coupled to a reservoir. By solving the exact non-equilibrium dynamics, we optimize erasure processes (taking both the fermion's energy and system-bath coupling as control parameters) in the slow driving regime through a geometric approach to thermodynamics. We find analytic expressions for the thermodynamic metric and geodesic equations, which can be solved numerically. Their solution yields optimal processes that allow us to characterize a finite-time correction to Landauer's bound, fully taking into account non-markovian and strong coupling effects.